INTERNATIONAL SCHOOL OF SUBNUCLEAR PHYSICS 53rd Course: THE FUTURE OF OUR PHYSICS INCLUDING NEW FRONTIERS Erice 24 June - 3 July 2015

Loredana Bellantuono, Università di Bari, INFN Sezione di Bari

Relaxation of a non Abelian plasma: a holographic model

based on arXiv:1503.01977 (to appear on JHEP)

work with Pietro Colangelo, Fulvia De Fazio and Floriana Giannuzzi

Relaxation of a far-from equilibrium QGP

Physical picture of **QGP** formation in Heavy Ion Collisions (LHC, RHIC)

OUR FOCUS:

evolution of the QGP from a pre-equilibrium state and estimate of physical observables (effective temperature, entropy density, energy density, pressure)

Loredana Bellantuono

QGP as a strongly coupled fluid

Evidence from the RHIC and LHC experiments: onset of the hydrodynamic regime for time scales larger than 1 fm/c after the collision.

WHAT ABOUT THE PRE-EQUILIBRIUM EVOLUTION?

The QGP produced is a strongly-coupled fluid which exhibits collective behavior.

Perturbative methods inapplicable!

HOLOGRAPHIC THERMALIZATION: AdS/CFT correspondence as a tool to describe non-perturbative dynamics of QGP.

Holography:

an optical technology by which a three-dimensional image is stored on a two dimensional surface via a diffraction pattern

Holographic principle ('t Hooft, Susskind): states in a spacetime region can equally well be represented by bits of information contained in its surface boundary

Loredana Bellantuono

The AdS/CFT correspondence

Quantum field theory on \mathcal{M}_4 duality at finite stationary T

 AdS_5 / BH metric

Black Hole: horizon -> T

Loredana Bellantuono

QGP formation and relaxation in holography

BOUNDARY SOURCING APPROACH

a time-dependent deformation pulse (quench) is introduced to the metric on the boundary in order to mimic the effects of heavy ion collisions.

QGP evolution towards equilibrium is computed in the 5-dimensional dual space from Einstein equations.

Loredana Bellantuono

Simplification

Space-time symmetries

- Translation and rotation invariance in the x_{\perp} plane
- Boost invariance along the x_{\parallel} direction

Approximately realized at the central part of the QGP

Moreover...

"Local thermal equilibrium ": expansion is much slower than relaxation

All the portions of the fluid share the same (time dependent) temperature.

Loredana Bellantuono

 $AdS_5: d s^2 = r^2 \left[-d \tau^2 + d x_{\perp}^2 + \left(\tau + \frac{1}{r}\right)^2 d y^2 \right] + 2 d r d \tau$

Loredana Bellantuono

BOOST INVARIANT DEFORMATION

- **4d**: $ds^2 = -d\tau^2 + e^{\gamma(\tau)}dx_{\perp}^2 + \tau^2 e^{-2\gamma(\tau)}dy^2$
- **5d**: $ds^2 = -A(r,\tau)d\tau^2 + \Sigma^2(r,\tau) \left[e^{B(r,\tau)} dx_{\perp}^2 + e^{-2B(r,\tau)} dy^2 \right] + 2dr d\tau$

Loredana Bellantuono

Erice, 24 June – 3 July 2015

Einstein's

equations

Evolution in the 5-dimensional bulk

A, B, Σ from Einstein's equations

$$\Sigma(\dot{\Sigma})' + 2\Sigma'\dot{\Sigma} - 2\Sigma^{2} = 0$$

$$\Sigma(\dot{B})' + \frac{3}{2}(\Sigma'\dot{B} + B'\dot{\Sigma}) = 0$$

$$A'' + 3B'\dot{B} - 12\frac{\Sigma'\dot{\Sigma}}{\Sigma^{2}} + 4 = 0$$

$$\ddot{\Sigma} + \frac{1}{2}(\dot{B}^{2}\Sigma - A'\dot{\Sigma}) = 0$$

$$\Sigma'' + \frac{1}{2}B'^{2}\Sigma = 0$$

$$\Sigma'' + \frac{1}{2}B'^{2}\Sigma = 0$$

$$Event horizon: the critical geodesics $r_{h}(\tau)$ such that $\lim_{\tau \to \infty} A(r_{h}(\tau), \tau) = 0$

$$\Delta pparent horizon: from \dot{\Sigma}(r_{h}(\tau), \tau) = 0$$
Effective temperature and entropy density$$

Directional derivatives :

 $f' \equiv \partial_r f$ along infalling radial null geodesics $\dot{f} \equiv \partial_\tau f + \frac{1}{2} A \partial_r f$ along outgoing radial null geodesics

Loredana Bellantuono

BOOST INVARIANT DEFORMATION

4d:
$$\frac{d s^2 = -d \tau^2 + e^{\gamma(\tau)} d \mathbf{x}_{\perp}^2 + \tau^2 e^{-2\gamma(\tau)} d y^2}{d s^2 = -A(r,\tau) d \tau^2 + \Sigma^2(r,\tau) \left[e^{B(r,\tau)} d \mathbf{x}_{\perp}^2 + e^{-2B(r,\tau)} d y^2 \right] + 2 d r d \tau}$$

Loredana Bellantuono

$\tau_{\rm f} \leq \tau \leq \tau_{\rm hydro}$

THERMALIZATION and ISOTROPIZATION of the far-from-equilibrium state after the quench

Loredana Bellantuono

 $\tau \geq \tau_{\rm hydro}$

FINAL HYDRODYNAMIC REGIME: both temperature and stress-energy tensor follow hydrodynamics

Loredana Bellantuono

Temperature and entropy density

Loredana Bellantuono

Energy density and pressure

quench is switched off $(\tau = \tau_f)$.

Setting the scale $T_{\rm eff}(\tau_f){=}500$ MeV, pressure isotropy is reached after a time $\tau_{\rm hydro}{-}\tau_f{\simeq}0.6~{\rm fm/}c$.

Loredana Bellantuono

Conclusions and perspectives

- The evolution dynamics of a boost-invariant non Abelian plasma has been analyzed in the holographic picture. The plasma is taken out-of-equilibrium by introducing a perturbation (quench) to the Minkowski boundary.
- We find that hydrodynamization is a two-step process: the temperature and the energy density acquire the hydrodynamical form as soon as the quench is switched off, while pressure isotropy is restored with a time delay of O(fm/c) [scale $T_{\rm eff}(\tau_f)$ =500 MeV].
- Comparable estimates of the time delay are obtained for different quench profiles.
- Although the boundary sourcing is a rather theoretical representation of the process of colliding heavy ions, these results suggest us what can be expected in realistic situations.
- What next? It should be possible to generalize this method in order to study more demanding problems which have less symmetry.

Thank you!

Bonus material

Other case studies

Loredana Bellantuono

Maldacena's conjecture

IIB STRING on

$$AdS_5(R) \times S^5(R)$$

Loredana Bellantuono

Apparent and event horizon

• The gray lines are radial null outgoing geodesics $\frac{d r}{d \tau} = \frac{A(r, \tau)}{2}$;

• The dashed dark blue line is the apparent horizon from $\dot{\Sigma}(r_{\scriptscriptstyle h}(au), au)=0$;

• The continuos cyan line is the event horizon obtained as the critical geodesics $r_h(\tau)$ such that $\lim_{\tau \to \infty} A(r_h(\tau), \tau) = 0$.

Loredana Bellantuono

Testing the numerical algorithm

Loredana Bellantuono